Computational Models for the Formation of Protocell Structures
نویسندگان
چکیده
There have been various attempts to simulate the self-assembly process of lipid aggregates by computers. However, due to the computationally complex nature of the problem, previous simulations were often conducted with unrealistic simplifications of the molecules' morphology, intermolecular interactions, and the environment in which the lipid molecules interact. In this article, we present a new computational model in which each lipid is simulated by a more realistic amphiphilic particle consisting of a hydrophilic head and a long hydrophobic tail. The intermolecular interactions are approximated by a set of simple forces reflecting physical and chemical properties of lipids, for example, hydrophobicity and electrostatic forces, which are believed to be crucial for the formation of various aggregates. With a set of carefully selected parameters, this model is able to simulate successfully the formation of micelles in an aqueous environment and reversed micelle structures in an oil solvent from an initially randomly distributed set of lipidlike particles. This model can be used to study, at the microscopic level, the self-assembly of different protocell structures in the evolutionary process and the impact of environmental conditions on the formation of these structures. It may be further generalized to simulate the formation of other, more complex structures of amphiphilic molecules such as monolayer and bilayer aggregates.
منابع مشابه
Reducing Computational and Memory Cost of Substructuring Technique in Finite Element Models
Substructuring in the finite element method is a technique that reduces computational cost and memory usage for analysis of complex structures. The efficiency of this technique depends on the number of substructures in different problems. Some subdivisions increase computational cost, but require little memory usage and vice versa. In the present study, the cost functions of computations and me...
متن کاملExperimental and theoretical studies on green and efficient deoximation using H202 catalyzed by Montmorillonite-K10 supported MnC12
Oximes were oxidized to the corresponding carbonyl compounds in good to high yields by ecofriendlyand green oxidant, H202 catalyzed by Montmorillonite K-10 supported Mangenese(II)Chloride. The structures of these compounds were favorably compared with the results of ab initiocalculations at three temperatures. Computational methods allow for the visualization of largeamounts of structural data ...
متن کاملStructure formation and generalized second law of thermodynamics in some viable f(R)-gravity models
We investigate the growth of matter density perturbations as well as the generalized second law (GSL) of thermodynamics in the framework of f(R)-gravity. We consider a spatially flat FRW universe filled with the pressureless matter and radiation which is enclosed by the dynamical apparent horizon with the Hawking temperature. For some viable f(R) models containing the Starobinsky, Hu-Sawicki, Exp...
متن کاملAutonomous systems: computational autopoiesis through artificial chemistries
In this paper, we study autonomous systems in the framework of artificial chemistries. More precisely, we focus on autopoietic principles, along with some thermodynamic considerations inspired by the concept of dissipative structure. We begin with a short review of existing works on computational autopoiesis in artificial chemistries, and identify their limitations from the point of view of the...
متن کاملThe computational study of adsorption of carbon monoxide on pristine and Ge-doped (6,0) zigzag models of BNNTs
The aim of this research is studying the effects of Ge-doped on CO adsorption on the outer and inner surfaces of (6, 0) zigzag model of boron nitride nanotube (BNNTs) by using DFT theory. For this purpose, eight models of CO adsorption on the surfaces of BNNTs are considered. At first step, all structures were optimized at B3LYP and 6-31G (d) standard base set and then the electronic structure,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artificial life
دوره 4 1 شماره
صفحات -
تاریخ انتشار 1998